Forum

Nome Utente:
Password:
Riconoscimi automaticamente
 Tutti i Forum
 MolecularLab
 Bioinformatica
 Test di verifica della normalità Kolmogorov, problema!!!
 Nuova Discussione  Nuovo Sondaggio Nuovo Sondaggio
 Rispondi Aggiungi ai Preferiti Aggiungi ai Preferiti
Cerca nelle discussioni
I seguenti utenti stanno leggendo questo Forum Qui c'è:

Aggiungi Tag Aggiungi i tag

Quanto è utile/interessante questa discussione:

Autore Discussione  

FoglioA
Nuovo Arrivato



2 Messaggi

Inserito il - 26 febbraio 2011 : 17:27:23  Mostra Profilo  Visita l'Homepage di FoglioA Invia a FoglioA un Messaggio Privato  Rispondi Quotando
Ciao a tutti, vi propongo questo mio problema.
Sto utilizzado R per diverse analisi statistiche su un set di dati sperimentali da me ottenuti in laboratorio. Tra queste sto verificanto se tali dati hanno una distribuzione normale. Ho usato diversi test: dal Chiquadro a Shapiro passando per il Kolmogorov-Smirnov. Da tutti ottengo risposte coerenti, tranne per il Kolmogorov-Smirnov, dove sembra che tutti i miei set di dati non abbiano distribuzione normale (cosa non vera perchè verificata con altri 5 test). Inoltre R mi da un warning message (cannot compute correctp-values with ties).
Qualcuno ha idea di cosa sbaglio? Magari il Kolmogorov-Smirnov ha dei limiti che non conosco?

Grazie a tutti.

chick80
Moderatore

DNA

Città: Edinburgh


11491 Messaggi

Inserito il - 26 febbraio 2011 : 19:00:18  Mostra Profilo  Visita l'Homepage di chick80 Invia a chick80 un Messaggio Privato  Rispondi Quotando
Bisogna premettere che, come già dicevamo in un'altra discussione, i test di normalità sono di difficile interpretazione (per una discussione più ampia vedi questa interessante discussione su CrossValidated).

In generale il test di KS viene di solito ritenuto meno potente di altri test come quello di Shapiro quando si cerca di valutare la normalità di un campione. Inoltre KS richiede un numero di campioni relativamente alto per dare risultati accurati.

Il warning che ottieni è dovuto alla presenza di ties (misure con lo stesso valore) nei tuoi dati. Questi possono falsare il risultato di KS, che assume che la tua variabile sia continua e quindi R ti dà un warning. Tuttavia, a meno che non rappresentino una grande parte della popolazione, puoi tranquillamente ignorare il warning.

Sei un nuovo arrivato?
Leggi il regolamento del forum e presentati qui

My photo portfolio (now on G+!)
Torna all'inizio della Pagina

FoglioA
Nuovo Arrivato



2 Messaggi

Inserito il - 04 marzo 2011 : 10:40:03  Mostra Profilo  Visita l'Homepage di FoglioA Invia a FoglioA un Messaggio Privato  Rispondi Quotando
Bè grazie delle delucidazioni e del link (molto interessante). Scusami per il ritardo della risposta, ma sono stato via una settimana.

Il mio set di dati è composto da 5 serie per 65 dati ognuna, qualche ripetizione c'è, ma poche (2 max 3). Onestamente pensavo che un tale numero fosse sufficiente per rendere il K-S affidabile, invece ne sbaglia 3 su 5 (nei confronti degli atri test).

Il problema è sempre il solito (almeno per me che non sono un esperto statistica), non è trovare il test più giusto durante la fase di elaborazione dei dati. Ne provo sempre diversi ed osservo i risultati ottenuti dai diversi se sono coerenti o no. Poi la parte difficile è quando scrivi l'articolo (dove la sintesi è d'obbligo) perchè non puoi citare tutti i test fatti, qunidi ne scegli uno. Così capita che ti trovi il revisore il quale non accetta l'articolo perchè a suo avviso il test statistico non era abbastanza potente. Ti consiglia di usarne un altro, che magari avevi anche usato!! Ma questo è un altro argomento. Grazie
Torna all'inizio della Pagina

TMax
Utente Junior

TMax

Prov.: BG
Città: Capriate


270 Messaggi

Inserito il - 04 marzo 2011 : 11:03:14  Mostra Profilo  Visita l'Homepage di TMax Invia a TMax un Messaggio Privato  Rispondi Quotando
Non è però molto salutare provare a fare molti test; per ogni test che fai paghi con l'aumento dell'errore di primo tipo...
La potenza di un test dipende principalmente dalla numerosità campionaria che, normalmente andrebbe stabilita prima di fare qualsiasi sperimentazione....
la scelta del test statistico da utilizzare non è particolamente complicata è sufficiente
definire bene la natura delle variabili che si hanno a disposizione che il tipo di test da utilizzare viene di conseguenza
Sull'opportunità di verificare la normalità dei dati, si è già discusso in questo forum, ed è stato sottolineato come in realtà gli assunti di normalità per l'utilizzo di metodi parametrici fanno riferimento all'errore residuo che deve avere una distribuzione normale, avere una varianza omogenea e indipendenza dell'errore....

in genere non mi preoccupo mai che i dati di partenza siano 'normali'...
Torna all'inizio della Pagina
  Discussione  

Quanto è utile/interessante questa discussione:

 Nuova Discussione  Nuovo Sondaggio Nuovo Sondaggio
 Rispondi Aggiungi ai Preferiti Aggiungi ai Preferiti
Cerca nelle discussioni
Vai a:
MolecularLab.it © 2003-18 MolecularLab.it Torna all'inizio della Pagina